首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23783篇
  免费   1141篇
  国内免费   735篇
  2023年   245篇
  2022年   205篇
  2021年   403篇
  2020年   502篇
  2019年   627篇
  2018年   578篇
  2017年   426篇
  2016年   482篇
  2015年   703篇
  2014年   1661篇
  2013年   1600篇
  2012年   1374篇
  2011年   1726篇
  2010年   1371篇
  2009年   1036篇
  2008年   1136篇
  2007年   1142篇
  2006年   1017篇
  2005年   872篇
  2004年   891篇
  2003年   722篇
  2002年   543篇
  2001年   388篇
  2000年   382篇
  1999年   421篇
  1998年   382篇
  1997年   350篇
  1996年   303篇
  1995年   326篇
  1994年   355篇
  1993年   277篇
  1992年   303篇
  1991年   267篇
  1990年   219篇
  1989年   233篇
  1988年   225篇
  1987年   196篇
  1986年   175篇
  1985年   179篇
  1984年   211篇
  1983年   116篇
  1982年   183篇
  1981年   156篇
  1980年   163篇
  1979年   151篇
  1978年   102篇
  1977年   106篇
  1976年   77篇
  1972年   28篇
  1971年   26篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
2.
Cardiac stem cells are described in a number of mammalian species including humans. Cardiac stem cell clusters consisting of both lineage-negative and partially committed cells are generally identified between contracting cardiac myocytes. In the present study, c-kit+, Sca+, and Isl1+ stem cells were revealed to be located inside the sarcoplasm of cardiac myocytes in myocardial cell cultures derived from newborn, 20-, and 40-day-old rats. Intracellularly localized cardiac stem cells had a coating or capsule with a few pores that opened into the host cell sarcoplasm. The similar structures were also identified in the suspension of freshly isolated myocardial cells (ex vivo) of 20- and 40-day-old rats. The results from this study provide direct evidence for the replicative division of encapsulated stem cells, followed by their partial cardiomyogenic differentiation. The latter is substantiated by the release of multiple transient amplifying cells following the capsule rupture. In conclusion, functional cardiac stem cells can reside not only exterior to but also within cardiomyocytes.  相似文献   
3.
Biotherapeutic proteins represent a mainstay of treatment for a multitude of conditions, for example, autoimmune disorders, hematologic disorders, hormonal dysregulation, cancers, infectious diseases and genetic disorders. The technologies behind their production have changed substantially since biotherapeutic proteins were first approved in the 1980s. Although most biotherapeutic proteins developed to date have been produced using the mammalian Chinese hamster ovary and murine myeloma (NS0, Sp2/0) cell lines, there has been a recent shift toward the use of human cell lines. One of the most important advantages of using human cell lines for protein production is the greater likelihood that the resulting recombinant protein will bear post-translational modifications (PTMs) that are consistent with those seen on endogenous human proteins. Although other mammalian cell lines can produce PTMs similar to human cells, they also produce non-human PTMs, such as galactose-α1,3-galactose and N-glycolylneuraminic acid, which are potentially immunogenic. In addition, human cell lines are grown easily in a serum-free suspension culture, reproduce rapidly and have efficient protein production. A possible disadvantage of using human cell lines is the potential for human-specific viral contamination, although this risk can be mitigated with multiple viral inactivation or clearance steps. In addition, while human cell lines are currently widely used for biopharmaceutical research, vaccine production and production of some licensed protein therapeutics, there is a relative paucity of clinical experience with human cell lines because they have only recently begun to be used for the manufacture of proteins (compared with other types of cell lines). With additional research investment, human cell lines may be further optimized for routine commercial production of a broader range of biotherapeutic proteins.  相似文献   
4.
Abstract: The turnover of a CNS-specific cell adhesion glycoprotein, ependymin, has earlier been found to increase during periods of neuronal plasticity. Here, ependymin mRNA expression was analyzed by semiquantitative in situ hybridization in goldfish. Learning of an active avoidance response resulted in a significant increase in ependymin mRNA expression 20 min to 4 h after acquisition of the task. In contrast, yoked control animals that were exposed to the same numbers of conditioned and unconditioned stimuli in a random, unpaired manner exhibited a strong down-regulation of ependymin mRNA. Hybridization signals were also increased by injection of anti-ependymin antiserum into brain ventricles. Ependymin mRNA was exclusively localized to reticular-shaped fibroblasts of the inner endomeningeal cell layer. Immunoelectron microscopic investigation, however, revealed ependymin also in distinct neuronal and glial cell populations in which no ependymin mRNA had been detected. Uptake of meningeal protein factors into glial and neuronal cells may therefore be of functional importance for plastic adaptations of the CNS.  相似文献   
5.
The actin cortex is a thin layer of actin, myosin and actin-binding proteins that underlies the membrane of most animal cells. It is highly dynamic and can undergo remodelling on timescales of tens of seconds, thanks to protein turnover and myosin-mediated contractions. The cortex enables cells to resist external mechanical stresses, controls cell shape and allows cells to exert forces on their neighbours. Thus, its mechanical properties are the key to its physiological function. Here, we give an overview of how cortex composition, structure and dynamics control cortex mechanics and cell shape. We use mitosis as an example to illustrate how global and local regulation of cortex mechanics gives rise to a complex series of cell shape changes.  相似文献   
6.
Attachment of traditional anticancer drugs to cell penetrating peptides is an effective strategy to improve their application in cancer treatment. In this study, we designed and synthesized the conjugates TAT-CPT and TAT-2CPT by attaching camptothecin (CPT) to the N-terminus of the cell penetrating peptide TAT. Interestingly, we found that TAT-CPT and especially TAT-2CPT could kill cancer cells via membrane disruption, which is similar to antimicrobial peptides. This might be because that CPT could perform as a hydrophobic residue to increase the extent of membrane insertion of TAT and the stability of the pores. In addition, TAT-CPT and TAT-2CPT could also kill cancer cells by the released CPT after they entered cells. Taken together, attachment of CPT could turn cell penetrating peptide TAT into an antimicrobial peptide with a dual mechanism of anticancer action, which presents a new strategy to develop anticancer peptides based on cell penetrating peptides.  相似文献   
7.
Aluminium is the most abundant metal in the Earth's crust and yet, paradoxically, it has no known biological function. Aluminium is biochemically reactive, it is simply that it is not required for any essential process in extant biota. There is evidence neither of element-specific nor evolutionarily conserved aluminium biochemistry. This means that there are no ligands or chaperones which are specific to its transport, there are no transporters or channels to selectively facilitate its passage across membranes, there are no intracellular storage proteins to aid its cellular homeostasis and there are no pathways which evolved to enable the metabolism and excretion of aluminium. Of course, aluminium is found in every compartment of every cell of every organism, from virus through to Man. Herein we have investigated each of the ‘silent’ pathways and metabolic events which together constitute a form of aluminium homeostasis in biota, identifying and evaluating as far as is possible what is known and, equally importantly, what is unknown about its uptake, transport, storage and excretion.  相似文献   
8.
《Phytomedicine》2014,21(4):479-490
Plants from the Amaryllidaceae family have been shown to be a promising source of biologically active natural compounds of which some selected are currently in pre-clinical development. Regardless of interesting pioneer works, little is known about Amaryllidaceae alkaloids that have shown promising anti-cancer activities. The crinane group of the Amaryllidaceae, including haemanthamine and haemanthidine, was amongst the first of these compounds to exhibit an interesting cytotoxic potential against cancer cell lines. However, the mechanism of cytotoxic and anti-proliferative activity is not yet entirely clear. The primary objectives of the current study were to investigate the effects of haemanthamine and haemanthidine on the induction of apoptosis and the cell cycle regulatory pathway in p53-null Jurkat cells. Results indicate that haemanthamine and haemanthidine treatment decreases cell viability and mitochondrial membrane potential, leads to a decline in the percentage of cells in the S phase of the cell cycle, induces apoptosis detected by Annexin V staining and increases caspase activity. Dose dependent apoptosis was cross verified by fluorescence and bright field microscopy through Annexin V/propidium iodine staining and morphological changes which characteristically attend programmed cell death. The apoptotic effect of haemanthamine and haemanthidine on leukemia cells is more pronounced than that of gamma radiation. Contrary to gamma radiation, Jurkat cells do not completely halt the cell cycle 24 h upon haemanthamine and haemanthidine exposure. Both Amaryllidaceae alkaloids accumulate cells preferentially at G1 and G2 stages of the cell cycle with increased p16 expression and Chk1 Ser345 phosphorylation. Concerning the pro-apoptotic effect, haemanthidine was more active than haemanthamine in the Jurkat leukemia cell line.  相似文献   
9.
Summary A diseased and mechanically treated surface of root cementum is known, clinically, to favor periodontal regeneration. The present investigation was undertaken to test whether previously diseased and experimentally treated root surfaces can support the in-vitro formation of a new collagenous matrix. Three teeth extracted for advanced periodontitis were treated first with 5% sodium hypochlorite for 2 h to remove all organic material from the root surface. After the healthy, apical one third of the root was cut off, the roots were scaled with moderate pressure to remove visible calculus. Non-demineralized root discs were cut and placed on a co-culture of periodontal ligament- and alveolar bone-derived cells. After 7 weeks in culture, either one of two matrix types was found along the root surface. The most frequent matrix consisted of clusters of cells layered within densely aggregated collagen fibrils. The other, less frequent matrix consisted of loosely arranged collagen fibrils adjacent to the cemental surface. The findings support the notion that, in vitro, a collagenous matrix is formed in contact to diseased and experimentally treated root surfaces. However, the smooth, non-demineralized and scaled cemental surface does not appear to be a suitable substrate for interdigitation with newly produced collagen fibrils.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号